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Autonomous systems or systems that are periodic with respect to the independent variable t, specified on R t x ~n (Tn is a torus of 
dimension n) are considered. In this paper 2nk-periodic rotational motions (including oscillatory motions), closed on R t x ~ (in 
a time A t = 2nk, k ~ N, for a system that is 2re-periodic in t) are investigated. It is shown that for such motions a theory analogous 
to the theory for oscillatory motions holds. In particular, Poincar6's theorem on the presence of a zero characteristic exponent in 
an autonomous system, the Andronov-Vitt theorem on the stability of rotational periodic motion of an autonomous system, and 
the theory of the continuation of rotational periodic motion with respect to a small parameter hold. The necessary and sufficient 
conditions for periodic rotational motion to exist are given for a reversible system, and a method is proposed for constructing all 
such motions. A detailed investigation is made of periodic rotational motions of a system, close to a conservative system with one 
degree of freedom. It is shown, in particular, that steady motions of an average system correspond in Volosov's method to exact 
periodic rotational motions. All (2nk/I m l) periodic rotational motions of a conservative system (k E N, m e L~{0}) are conserved 
(in the sense of continuation with respect to a parameter) when small reversible perturbations, 2n-periodic with respect to t, act 
on it. It is show, in the problem of the motion of a satellite in the plane of the elliptic orbit under gravitational forces (the Beletskii 
problem), that additional perturbing factors have no effect on the qualitative conclusions regarding, the existence of periodic 
rotational and oscillatory motions or on the stability of such motions. © 1999 Elsevier Science Ltd. All rights reserved. 

In the problem of a mathematical pendulum, a remarkable relationship is observed between the oscillatory and rota- 
tional motions. These two qualitatively different forms of motion are also described mathematically by functions of 
different classes. However, there is a general property which unites the oscillatory and rotational motions: both are 
periodically repeating processes. In other words, the oscillatory and rotational motions are examples of periodic motion. 

We usually mean by periodic motion the solution of the describing system of differential equations, defined by 
periodic functions. The periodic motion here is a closed integral curve in phase space. 

In the problem of the mathematical pendulum the oscillatory and rotational motions are also represented by 
closed curves, if we change from the phase plane to a phase cylinder. On this cylinder the state of the system is 
defined by the angular coordinate (the angle of rotation of the pendulum) and the angular velocity, measured along 
the cylinder axis. The oscillatory motion on the phase cylinder is a special case of rotational motion, when the 
number  of rotations of the representative point  around the cylinder along the closed curve is zero. 

For a closed curve on a phase cylinder the angle ~ satisfies the condition 

9(t + x) = tp(t) + 2/on, m ~ Z 

(~ is the time taken to make a complete circuit round the closed curve). Then tp'(t) is a periodic function of t with 
period x and 

tp(t) = (2rtm/x)t + ~(t) ,  ~ ( t  + x) = ~(t )  

so, on changing to a system of coordinates, rotating uniformly with angular velocity 2ran/% we have oscillatory 
motion. 

This approach can be used to investigate rotational motions. However, some difficulties arise here due to the 
dependence of the period x on the initial conditions. Another  approach toinvest igat ing both oscillatory and 
rotational motions using a single theory is based on the fact that the corresponding integral curve is closed. Thus, 
for example, the rotations of a satellite in the plane of the elliptic orbit has been investigated [1, 2].~ It turns out 
that the theory developed using the second approach is completely analogous to the well-developed theory of non- 
linear oscillations. 

In this paper we show how, using the theory of non-l inear  oscillations, one can construct a theory of periodic 
motions, which enables both oscillatory and rotational motions to be investigated using a single approach. Rotational 
motions which, in a special case, degenerate into oscillatory motion are considered. 

tPrikl. Mat. Mekh. Vol. 63, No. 2, pp. 179-195, 1999. 
~:See also VARIN, V. P., Generalized periodic solutions of the equations of the oscillations of a satellite. Preprint No. 97, 

Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 1997. 
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1. R O T A T I O N A L  M O T I O N S  AND T H E I R  S T A B I L I T Y  

Consider the system 

x- = X(x, y, t), y" = Y(x, y, t) (1.1) 

(x is an/-vector  and y is an n-vector) with right-hand sides that are 27z-periodic with respect to t and 
with respect to the vector y. System (1.1) is thereby specified on R t x ~-n, where 71 -n is a torus of dimension 
n. The solution of this system x = q~(t), y = 0( t )  will be called a 2nk-periodic motion if 

q~(t + 2T*) = q~(t), d~(t + 2T*) = ~(t) + 2rim, m ~ Y", T* = ~k (1.2) 

In this case the integral curve on R t × 1 TM is closed after a time At --- 2nk. Conversely, if the integral 
curve on R t x -~n is closed after a time At = 2nk, the functions ~o(t), ~(t)  satisfy condition (1.2). 

Hence, conditions (1.2) completely define 2nk-periodic motion and give the necessary and sufficient 
conditions for such motion to exist 

q~(to + 2T*) = q~(t0), 0(t0 + 2T*) = @(t0) + 2rim, m ~ 7/n, T* = nk 

(t o is the initial instant of time). 
Solution (1.2) describes both oscillatory motion (m = 0) and rotational motion (m # 0). When 

(m ~ 0) solution (1.2) is not 2nk-periodic in the usual sense of the word. Nevertheless, taking the above 
explanations into account, everywhere in this paper we will consider 2nk-periodic motions of the form 
(1.2). In the case of autonomous system (1.1) we will investigate 2T*-periodic solutions, closed on 
R t x ~-n after a time At = 2T*. Finally, note that the cases when l = 0 or n = 0 are also covered by the 
investigations below. 

Suppose autonomous system (1.2) allows of 2T*-periodic motion (1.2). Then the equations in 
variations for (1.2) have the particular solution ~O'(t), 0"(t), which is 2T*-periodic in the usual sense of 
the word 

q~-(t + 2/'*) = qr(t), L~r(t + 27"*) = ~'(t) 

where the equations in variations themselves represent a system of linear differential equations with 
coefficients that are 2T*-periodic in t. Consequently, Poincar6's theorem holds: the characteristic 
equation has at least one root equal to unity. 

The equations of perturbed motion for 2T*-periodic motion (1.2) are 2T*-periodic in t. When the 
remaining I + n - 1 roots have moduli less than unity, these equations allow of a single-parameter family 
of periodic solutions. Hence the following assertion holds. 

Theorem 1 (the Andronov-Vit t  theorem [4]). 2T*-periodic motion (1.2) of autonomous system (1.1) 
is Lyapunov stable if l + n - 1 roots of the characteristic equation have moduli less than unity. 

The proof  repeats word for word the proof given in [5] for the case of a solution that is periodic in 
the usual meaning of the word. 

The generalization [5] of the Andronov-Vit t  theorem also holds. 
If system (1.1) allows of ap-family on 2nk-periodic rotational motions (p <~ l + n), each of the solutions 

of this family is Lyapunov stable, if the characteristic equation has l + n - p  characteristic exponents 
that are less than unity in modulus. 

2. T H E  P R O B L E M  OF T H E  C O N T I N U A T I O N  OF 
R O T A T I O N A L  M O T I O N  W I T H  R E S P E C T  TO A P A R A M E T E R  

Consider the sufficiently smooth autonomous of 2~z-periodic system 

x- = X(x, y, t) + gXl(it, x, y, t) (2.1) 

y- = Y(x, y, t) + ItYl(gt, x, y, t); x ~ R t, y ~ T n 

(It is a parameter),  specified on R l × T n. We will assume that when It = 0 the generating system (1.1) 
obtained allows of 2T*-periodic motion of the form (1.2), where T* = n/k in the case of system (2.1), 
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2re-periodic with respect to t. We will investigate the problem of the existence in (2.1) when IX ~ 0 of 
2T-periodic motion, which converts into motion (1.2) as IX ---) 0. 

The necessary and sufficient conditions for 2T-periodic motion to exist have the form 

x(l.t, x o, yO, 2T) = x ° (2.2) 

y(g,  x o, yO, 2T) = yO + 2xm, m ~ 2rn 

where x(~, x °, yO, t), y(Ix, x °, yO, t) is the general solution of s~stem (2.1) with initial point (x °, yO) when 
t = 0. System (2.1) has a solution when ~t = 0: x ° = q~(0), y = y* = ~(0). Hence, it follows from the 
theory of implicit functions that system (2.2) is consistent for sufficiently small J ~t I ~ 0 if the following 
condition is satisfied: 

in the case when system (2.1) is 2r~-periodic in t 

I ~ ( 0 ,  x°,y°, 2rdc) _ 
II ~x ° 

rank 8 

I[ , yCo, x°,y °, 2 k) 
~x ° 

11 ~gx(0'x°'y°'2r~k)3yO ] 

~y (0, x °, yO, 2nk) _ I ,  
~yO • 

=l+n (2.3) 

in the case of an autonomous system 

~ ~x(0, x °, yO, 2T) 

rank I ~ - II 
I aye °,x°,y°,2r) 

 x 0x0.o2T, x . 2 ,° 2T,2T,JI 
3Y° /I = l + n (2.4) 

~y(0, x°,y °, 2T) 
~gy0 In Y(~2T),*(2T),2TII" 

(I/is the identity j-matrix). 
The calculations in (2.3) and (2.4) are carried out for x ° = x*, y0 = y, ,  T = 7"*. 
By analogy with the case of motion that is periodic in the usual meaning of the word (m = 0), when 

condition (2.3) or (2.4) is satisfied we have the Poincar6-isolated case [6]. 

Theorem 2. In the Poincar6-isolated case, system (2.1), for sufficiently small I Ix I * 0, has a unique 
2T-periodic motion (T = nk in the case of a 2rr-periodic system), which converts into motion (1.2) as 
~t--~ 0. 

Notes. 1. Condition (2.3) or (2.4) is checked by calculating the roots of the characteristic equation of the system 
in variations. 

2. A complete analogy follows from Theorem 2 in problems of the continuation with respect to a parameter of 
oscillatory motion (m = 0) and rotational motion (m ~ 0), where, in the isolated case, both problems are solved 
by Theorem 2. 

3. The non-isolated cases in the theory of rotational motions are also investigated as in the theory of oscillatory motions. 

3. A SYSTEM OF S T A N D A R D  F O R M  

We will assume that X(x, y, t) = 0 in system (2.1). We then obtain the following system of standard 
form, which is important in applications 

x" = IxX(I.t, x, y, t) (3.1) 

y" = ~(x, y, t) + I.tY(la, x, y, t) 

We will first investigate periodic system (3.1). Equations (2.2) have the form 

x ° + I-txn(I.t, x °, yO, 2~k) = x ° (3.2) 

~(x o, yO, 2rtk) + Ixyl(~t, x °, yO, 2~k) -- yO + 2/tin 
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where 

x = x°(const), y = O(x °, 3~ ~, t) 

is a solution of the generating system 

x" = 0, y" = to(x,  y,  t) ( 3 . 3 )  

with initial point (x °, y0). System (3.2) has a unique solution for sufficiently small I ~t I if the system of 
functional equations 

0 0 2nk 
I(x ,y ) - J X(0,x°,O(x °,y°,t))dt = 0 

0 

O(x o, yO, 2nk) = yO + 2rim 

(3.4) 

has a simple root (x*, y*). This root will obviously be simple when the following condition is 
satisfied 

3 ~  ~yO 
r a n  

~3x o ~yO • 

= l + n (3.5) 

(the calculations are carried out for the point (x*, y*). 
The second equation in (3.4) reflects the fact that the 2nk-periodicity of the motion of generating 

system (3.3) also consists of n scalar equations in the l + n unknowns x ° . . . .  ,xt, y l , °  o . . . , Y ° .  Consequently, 
its solution contains 1 arbitrary parameters and defines an/-family of 2nk-periodic motions of the 
generating system. Various interesting cases are possible here. 

1. A family of"amplitude" x °. Suppose, when y0 = y.,  the second equation in (3.4) becomes an identity 
in x °. We then have (OO/Ox°). - 0 in (3.5) and the sufficient conditions for system (3.2) to be solvable 
are as follows: (a) the equations in variations 

dz/dt = Oto/Oy I. z 

for the second equation in (3.3), which are constant for 2r&-periodic motion x = x*, y = O(x*, y*, t) 
of generating system (3.3), have no 2nk-periodic solution 
(b) the amplitude equation 

2r~k 0 

S X(0, x °, O(x , y*, t), t)dt = 0 
0 

has a simple root x ° -- x*. 
When these conditions are satisfied, system (3.1) has the following unique 2nk-periodic solution for 

sufficiently small I Ix I ~ 0 

I , , * 

x = x* +It I X(0, x ,~(x  , y , t), t)dt + o(1~), Y = ~(x*, y*, t) + g~l  (t) + oOt) (3.6) 

where 01(t) is a particular 2nk-periodic solution of the equation 

dzldt = 3to/Oy l, z + Y(0, x*, y*, , (x* ,  y*, t), t) 

This solution exists and is unique by virtue of condition (a). 

2. A family o f  initial "angle" y0. We will first assume that 
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l > n, x°= x°(oq ..... ctt--n, ~1 ..... ~ )  

and the second equation in (3.4) is satisfied when 13 = 13" identically with respect to y0 and a. Then, 
with this value of 13 we have 

r = rank(o~/o~x°), < n, (o~/3y ° - In), --- 0 

I f r  = n in this case, then to each root (or*, y*) of the amplitude equation 

2 n k  

J" x(0, x°(~  13"), O(x° (~  13"), y0, t), t )dt  = 0 
o 

for small Ilxl * 0 there corresponds a unique 2nk-periodic motion of the form (3.6). When ~ = (x °, 
. . . ,  x°) r (T indicates transposition) the condition r = n is verified by integrating n systems of linear 

inhomogeneous equations 

Z~ = ~ . .ps j ( t )Z j  + ~X~k , s , k  = l . . . . .  n; P - - t i p s  j I1= 
j = l  . • 

with zero initial conditions. When P - 0 we have r = n if 

detU J 3c°s d4  # 0 (3.7) 
0 ~x, I. 

Suppose now that l < n and the second group of equations in (3.4) is satisfied for arbitraryy ° . . . .  
y,0 and fixed x° _-- X*, Yl+lO ---- Y l + l , *  • . . ,  yO = Y*n. Then, to determine y0 . . . . .  y0 we have a system of i 
amplitude equations 

27tk . , 0 0 * * 
X(0, x ,d~(x , yn ..... Yt , Yt+l ..... Yn, t), t )dt  = 0 

0 

To each simple root (.vT . . . . .  Y3 of this system, which satisfied the condition 

rankll(00/0x°),, (/kl,/Oy°), - I.II = n 

(the asterisk denotes a calculation with x ° = x*, y0 = y. ,  t = 2rrk) when kt ¢ 0, there corresponds a 
unique 27rk-periodic motion of Eq. (3.1). 

When I = 0 there is no amplitude equation and the condition for 2nk-periodic motion to exist when 
~t ¢ 0 is the inequality 

detllOtlJ/Oy ° -  lnll. ~ 0 

if y* is the root of the second equation of (3.2). 

3. The  f r equency  depends  only  on  the "ampl i tude"  x °. We will consider an important special case when 
the function to depends only on the vector x. Here the general solution of generating system (3.3) has 
the form 

x = x °, y = to(x°)t + yO (3.8) 

Formulae (3.8) obviously describe 2r&-periodic motion if to(x °) = m / k  (m ~ 7/n, k ~ t~), and when 
m = 0 we have a constant solution. When m ~ 0 the motion is rotational: the "amplitude" x is constant, 
while the "angle" y changes by 2gin when the time increases by 2nk. 

The case considered is a special case of paragraph 2 above. Hence, the sufficient condition for a 
unique 2r&-periodic motion to exist when ~t ¢ 0 is that a simPle root (x*, y*) of the system of functional 
equations 
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2xk 

to(x°)  = k '  J X(O, x °,  to(x °)t  + yO, t ) d t  = 0 
o 

should exist, where condition (3.7) takes the form 

rankll0to(x°)/~°ll. = n 

(3.9) 

Suppose (x*, y*) is a simple root of system (3.9). System (3.2) can then be written in the form 

x~ (o, x °, yO, 2nk) + o (ix) = 0 

2nk 

3~(x*) Ax + Ix J Y(0, x *, to(x*)t + y*, t)dt + o(ix) + o(Ax) = 0 
c3x * 2nk o 

(Ax = x ° -  x*)  

(3.10) 

(3.11) 

Put Ax = ~t~. Then, when condition (3.10) is satisfied, from the second equation in (3.11) we can 
determine the vector ~, that contains 1 - n arbitrary components. These components, and also Ay = 
y0 _ y .  = Ix~q, are found from the first equation in (3.11). As a result, the solution which describes 2nk- 
periodic motion has the form 

t 

x = X * +IX[~ + J X(O, x *, to(x*)t + y*, t)dt] + o(Ix) 
0 

y = y * +(m I k)t  + IxDI + 3_(x*),,~ ~t + tj Y(0, x *, to(x*)t +y*,  t)dt] + o(Ix) 
0x* 0 

In the degenerate case, when we have to(x*) = m/k, r < n for certain x*, we need to make the 
replacement x = x* + u, y = (m/k) t  + v. We then obtain, in u, v variables, the problem of oscillatory 
motions in a system of standard form. This problem was considered previously in [7]. 

4. A n  au tonomous  system. Two approaches are possible when investigating an autonomous system: 
(1) analysis of a system of the form (3.2), in which the period 2r& is replaced by 2T, and the conditions 
for this system to be solvable are derived, and (2) reduction to a periodic system. 

We will illustrate the second approach when the function to depends only on the variable x. In 
rotational motion of the generating system we have to(x °) ~ 0. The inequality to(x) ~ 0 arises in a finite 
time interval also for small I Ix I ~ 0. We will assume that the last component  ton(x) of the vector to(x) 
is non-zero. Then, we can introduce a new independent variableyn in the problem of periodic motions. 
By defining a unique 2r&-periodic motion 

x = x ( y . ) ,  y~ = Yl(Yn) . . . . .  Yn-1 = Y~I(Yn)  

we get a single autonomous differential equation for determining yn(t). 

4. P E R I O D I C  M O T I O N S  OF R E V E R S I B L E  S Y S T E M S  

Consider the following reversible system, 2r~-periodic in t 

u- = U(u ,  v, t), v- = V(u ,  v, t) (4.1) 

which is invariant under the transformation (t, u, v) ~ (-t, u, -v). We will assume that system (4.1) is 2n- 
periodic with respect to all or some of the components  of the vector v and is specified on ~ x T q. For 
simplicity we will consider below the case when p = l and q = n (l and n are the dimensions of the 
vectors u and v, respectively); the general case when p i> l, q 1> n, is easily considered from the one 
described. 

With these assumptions the functions U(u, v, t) and V(u, v, t) will be odd and even respectively with 
respect to the set of variables (t, v). In addition, these functions are 2n-periodic with respect to (t, v) 
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and are represented by Fourier  sine and cosine series, respectively. Obviously this representat ion is 
retained when (t, u, v) is replaced by (t + not, u, v + nil); ot ~ Z, 13 ~ Z n. Then the t ransformed system 
is also invariant under  the replacement  (t, u, v) ~ (-t, u, -v). Hence  it follows that  the two transforma- 
tions (t, u, v) ~ (t + nt~, u, v + nil)  and (t, u, v) ---) ( - t  + not, u, -v  + nil)  of  the initial system (4.1), 
which lead to the same system, exist. 

The t ransformation (t + not, u, v + nil)  --~ (- t  + not, u, -v  + nil) has the fixed set 

M = { t, u, v: sint = 0, sinvs = 0 (s = 1 ..... n) } 

which we will call a fixed set of the reversible system (4.1), specified on R t × -fin. 
Suppose u(u °, v °, t °, t), v(u °, v °, t °, t) is a solution of  system (4.1) with initial point (u °, v °) when t = 

t o . In (4.1) we then have two solutions simultaneously 

u = u(u °, :l:b + nil, :k a + not, ± a + not :I: t) 

v = "l-v(u °, :l:b + nil, :I: a + noq 4- a + ~ot :I: t)-7.-nil 

a ~  R , b ~  R n 

These solutions are symmetric with respect to the set M. If  a = 0, b = 0, the two solutions are identical 
and represent  a solution that  is symmetric with respect to the fixed set M. 

For the symmetric  solution we have 

u(u °, nil,/tot, - t  + not) = U(U 0, nil,  not, t + not) 

v(u °, nil,  not, - t  + not) = -v(u 0, nil, not, t + not) + 2nil 

(4.2) 

This solution will be 2nk-periodic (k ~ I~), if 

u(u °, nil, nt~, n(2k + et)) = u(u °, nil, rr~t, ha )  = u ° (4.3) 

v(u °, nil, not, n(2k + ot)) = v(u °, nil,  not, not) + 2~tm, m e Z n 

Then, on R t × -fin the symmetrical,  2~k-periodic motion is closed after k rotations with respect to t and 
ms rotat ions with respect to vs(s = 1 . . . . .  n); the sign of  ms indicates the direction of  the motion with 
respect to vs. W h e n  m = 0 we have oscillatory mot ion and when m # 0 the motion will be rotational. 

The following proposit ion is fundamenta l  for investigating symmetrical periodic motions of system 
(4.1). 

Theorem 3. In order  that  the motion u(u °, v °, t °, t), v(u °, v °, t °, t) of system (4.1) should be symmetrical 
and 2nk-periodic, it is necessary and sufficient for the following conditions to be satisfied 

t ° = r~ ,  CJ = nil, v(u °, nil, net, ~ k  + or)) = n(m + ii), m e Z" (4.4) 

which indicates intersection of the fixed set M at the instants of time not and n(k + ct). 

Proof. The symmetry of the solution follows f rom the conditions t o = nt~, v ° = nil. Hence  equalities 
(4.2) hold. We will put 

u'~ = u(u °, nil, not, ~(+k + ot)), v'~ = v(u °, nil, ha, ~(+k + ot)) 

Substituting t = -r~k into (4.2) we have 

v[ = -v*_ + 2~til (4.5) 

The mot ion  is 2r&-periodic, and hence we obtain from (4.3) 

v+ = v*_ + 2rim (4.6) 

Equalities (4.5) and (4.6) lead immediately to condit ion (4.4). 
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We will prove the sufficiency. We have 

u(u °, a;p, get,/t(2k + or)) = u(u~, n(m + 13), n(k + ct), 7t(2k + or))"-"' 

= u(u~, ~(m + p), x(k + a ) ,xa )  = u(u °, ~p, 7toe, ~a)  = u° 

v(u °, n13, xct, g(2k + o0) = v(u~, n(m + p), n(/c + ct), x(2k + a))'~ > 

= -v(u ~, ~(m + 13), It(k + ct), ~tx) + 27t(m + 13) = -v(u °, 7tl],, xct, xct) + 21t(m + 13) = 

= x(2m + p) 

(the number  of  the formula  above the equali ty sign indicates a transit ion using formula  (4.2)). 
Figure 1 illustrates T h e o r e m  3. The  cont inuous curve represents  a por t ion  of  the trajectory when t 

changes f rom nc~ to n(k + co), and the dashed curve represents  a por t ion of  the trajectory when t changes 
f rom n(k + c~) to n(2k + c~). 

In an au tonomous  reversible system, specified on R t × T n, the fixed set has the form M = {u, v: 
sinvs = 0 ( s  = 1 . . . . .  n)}. 

Theorem 4. In o rder  for  the mot ion  u(u  °, v °, t °, t), v(u °, v °, t °, t) with initial point  (u °, v °) at t = t o of  
the au tonomous  reversible system 

u" = U(u, v), v" = V(U, v); U(u, -v), = -U(u, v), V(u, -v) = V(u, v) (4.7) 

specified on R t x T n to be symmetrical  with respect  to the set M and 2T-periodic,  it is necessary and 
sufficient for  the following condit ions to be satisfied 

¢) = n i l  v(u °, n13, t °, P + 73 = rc(m + 13), 15, m e Z" (4.8) 

or, which is the same thing, the existence of  at least two c o m m o n  points of  the solution considered and 
of  the fixed set M. 

Notes. 1. For an autonomous or periodic system, specified on R l+", in Theorems 3 and 4 it is necessary to take 
m = 0 (the HeinbockeI-Struble theorem [8]). When investigating oscillatory motions (m = 0) Theorems 3 and 4 
are applicable irrespective of the periodicity with respect to v of system (4.1) or (4.7). 

2. If system (4.1) or (4.7) is 27t-periodic only with respect to the components vs+l . . . . .  vn of the vector v, then, 
when, using Theorems 3 and 4, it is necessary to assume m] = 0 , . . . ,  ms = 0, and when determining the fixed set 
one must put vl = 0 , . . . ,  vs = 0. 

F rom T h e o r e m s  3 and 4 we obtain a me thod  of  construct ing all symmetrical  per iodic  motions of  the 
reversible system on R t x T n. 

%" 
Theorem 5. Suppose M is the image of  the fixed set M of  the reversible system (4.1) or  (4.7), obtained 

0 0 0 when t changes f rom t to t + ~ (t = ~c~, cc ~ Z, for  a system that  is 2~-periodic with respect  

"% 
\ 
\ 4~1l" 

m=~ Im=.~l m=l  ~ e~r 

_dd t,..{v 
' t <, 

"q l l -  J 

Fig. 1. 
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to t). Then, the set M A M s contains all points which, when t = t o + x, belong to the symmetrical, 
(2x/v)-periodic motions (v = 1, 2 . . . .  ) on R t x ~-", where x = nk(k ~ /~), v = 1 for 2n-periodic system 
(4.1). 

Note .  T h e  theorem was obtained previously [9] for the case of oscillatory motions. 

Theorem 5 gives the correct solution of the problem of the numerical construction of all symmetrical 
periodic motions of  the reversible system when n = 1. It  is important  that, as a result of  a numerical 
investigation, an exact qualitative result should be derived regarding the existence of the required motion. 
The initial point for such motion can be calculated with the necessary accuracy. The situation here is 
analogous to that which exists for oscillatory motions [9]. 

Consider the 2rt-periodic system (4.1) with n = 1, in which M~ is the image of the set M0 = {u, x) • 
= 0} when t changes f rom no~ to r~(k + c~) (Fig. 2). Then  the points of intersection of MR and M* = 

{u, u : sin a9 = 0} belong to symmetrical periodic motions. Here  both oscillatory motions (m = 0) and 
different 2n-periodic rotational motions (m = 1, 2, 3) are possible; the corresponding values of m are 
indicated. Obviously, by virtue of  the fact that the system is 2n-periodic in t it is sufficient to consider 
only the two values t o = 0 and t o = rc and to construct only the two sets M~ and M']; M] is the image 
of the set M 1 -- {u, v : ~ -- '11:}. 

When investigating any specific mechanical problem we need to know the initial instant of time 
t o = 0 or t o = n. We then determine, using the above method,  all the 21r-periodic motions beginning 
with oscillatory motions (m = 0) and increasing m = 1, 2 . . . . .  We determine all 4n-periodic motions, 
Or-periodic motions, etc. It  can be seen from this simple scheme that the 27r-periodic motions contain 
such qualitatively different forms of motions as oscillations (m = 0), stow rotations (I m I > 0, I m I is 
a small quantity), and rapid rotations (I m I >> 1). 

5. T H E  P R O B L E M  OF T H E  C O N T I N U A T I O N  W I T H  R E S P E C T  TO 
A P A R A M E T E R  OF S Y M M E T R I C A L  P E R I O D I C  M O T I O N S  

OF A R E V E R S I B L E  S Y S T E M  

We will consider a sufficiently smooth autonomous reversible system or one that is 2n-periodic with 
respect to t 

u'=  U(u, v, t) + ~tUi (la., u, v, t) 

u '=  V(u,v , t )+~Vl(IX,  U,V,t); u ~ R t 

(5.1) 

with a small pa ramete r  I.t and a fixed set respectively M - {u, v : ~oi = 0 (i = 1 , . . . ,  s ~< n), sin u, = 0 
(j = s + 1 . . . . .  n) and M = {t, u, v : sin t = 0, x)i = 0 ~ = 1 . . . . .  s ~< n), where it is assumed that 
system (5.1) is 2re-periodic with respect to the variable v~ ( j  = s + 1 . . . .  , n ) .  

Suppose that, when la = 0, in system (5.1) there is 2T*-periodic motion (T* = r&, k ~ ~,  for a periodic 
system) 

u=ko(t), v =dl(t);ko(-t)=ko(t), O(-t)=-Oj(t)+2n~(p~Z n, (3n . . . .  =J3, =0 )  (5.2) 
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symmetrical with respect to the fixed M. We will investigate the issue on the existence in system (4.1) 
when IX ~ 0 of symmetrical, 2T-periodic motions (T = r& for a periodic system), which become the 
motion (5.2) when Ix = 0. 

We will denote by u(ix, u °, v °, t °, t o + t), v(ix, u °, v °, t °, t o + t) the solution of system (5.1) with initial 
point (u °, v °) when t = 0. Then, the necessary and sufficient conditions for symmetrical, 2T-periodic 
motion to exist have the form (4.4) or (4.8) and represent a system of n functional equations in 
u ° . . . .  , u ° (and T in the case of an autonomous system). This system has the solution u = ~p(0) when 
Ix = 0. Hence, for sufficiently small IX ~ 0 the system has a solution when the following condition is 
satisfied: 

for a 27z-periodic system 

r a n K .  0 II = n 

for an autonomous system 

~[[~u~(ix, u°,l¢[~,t°,t ° + T) ~ux(ix, u°,l¢[l,t°,t 0 + T[ 
r a n K i i  o , ~ = rl (5.4) 

II 
The calculations in (5.3) and (5.4) are carried out for Ix = 0, u ° = ~p(0). Consequently, when condition 

(5.3) or (5.4) is satisfied the problem of existence when Ix ~ 0 in an autonomous or periodic system 
(5.1) is solved solely by the generating system obtained from (5.1) when IX = 0. This case is a rough 
one. 

Theorem 6. In the rough case (5.3) or (5.4) of periodic or autonomous system (5.1) when IX = 0 we 
have an (l - n)- or (l - n + 1)-parametric family of symmetrical periodic motions, which contain motion 
(5.2), and this family is continued in a unique way with respect to the parameter Ix. 

Condition (5.3) is only satisfied when 1 I> n. If l = n, the generating system has a unique symmetrical, 
2nk-periodic motion, which is continued in a unique way with respect to Ix. In autonomous system (5.1) 
when I = n - 1 and condition (5.4) is satisfied both when IX = 0 and when Ix ~ 0, there is a unique 
symmetrical, 2T(Ix)-periodic motion (T(0) = T*). When l t> n two cases are possible in an autonomous 
system. In the first of these, among the first l columns of the matrix in (5.4) there are n linearly 
independent motions. Then, the generating system has an (l - n + 1)-family of l - n quantities of 
u ° . . . . .  u°and T symmetrical, 2T-periodic motions; this family is continued with respect to the parameter 
ix. Here, when Ix ~ 0, one cannot guarantee the existence of a symmetrical periodic motion of the same 
period as in the generating system. 

It follows from the above that the problem of the continuation with respect to a parameter of a 
symmetrical periodic rotational motion in rough cases can be solved in the same way as in the special 
case of oscillatory motion [10, 11]. The same situation arises in non-rough cases. The theory for these 
cases was in fact described earlier [12, 13]. A system of the standard type is considered in [7]. 

6. A SYSTEM C L O S E  TO A C O N S E R V A T I V E  SYSTEM 
W I T H  ONE D E G R E E  OF F R E E D O M  

Consider the equation 

21¢ 

z'" + f ( z )  = IXFCIX, z, z', t), J fCz)dz = 0 (6. I) 
0 

where the functions f(z), F(IX, z, z', t) are 21z-periodic in z and t. When Ix = 0 Eq. (6.1) has the energy 
integral 

z "2 + V(z) = x(eonst), V(z) = 2J f ( z )dz  

where we can assume that the 2re-periodic function V(z) contains no constant term. Then, when 
x > maxV(z) we have rotational motions (Fig. 3), which are closed on the cylinder (z, z'). In the phase 
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plane (z, z') these solutions are not closed, and the velocity z" keeps its sign. The period of the rotational 
motions is given by the formula 

2~ dz 
2T(x) = S ~ ,  g(x, z) = ~ -  V(z) 

o g(x,z) 

The motions will therefore be (2rrk/I m I)-periodic with respect to time t(k ~ N, m ~ 7/), if the energy 
constant x satisfies the condition T(x) = r&/I m I. 

The problem of the existence in (6.1) of oscillatory motions, which, when Ix = 0, convert into one of 
the oscillations (Fig. 3) of the generating system, was investigated in [14]. Below we will investigate the 
problem of the existence of  2nk-periodic rotational motions of Eq. (6.1) when Ix ~ 0. Here, without 
loss of generality, we will consider rotations with positive velocity z .  

We will introduce new variables of the problem: x, y (y = z). Then Eq. (6.1) can be written in the 
form of the system 

• ° 

x = 2Ixg(x,y)F(ix.,.y,g(x,y),t), y =g(x,y)  (6.2) 

0 which is 27t-periodic in y and t. When Ix = 0, system (6.2) has a 2T(x )-periodic rotational motion for 
0 O 0 0 0 anyy andx > max V(z);x  andy  are the initial values o fx  andy when t = t = 0. Consequently, we 

have the case considered in Section 3, Subsection 2. 
Suppose T(x*) = nk/I m I and the function W(x*, y0, t) satisfies the second equation in (6.2) when 

x = x*. We then calculate 

t= 

¥(x*,yO,t) 
f 
yil 

, ¥(x o.yo.t) d ~  = g(x ;v) I 3 >° 

g(x*,~)'  ~x* 2 yO 

The condition O~//k* ~ 0 (when t = 2r&) is then satisfied, and the problem of the existence of 2nk- 
periodic rotational motion when Ix ~ 0 is solved by the amplitude equation 

2xk 
I(Y °) I o o = F(O,w(x ,y ,t),g(x ,W(x ,y ,t),t)g(x ,W(x ,  y° , t ))dt=O 

0 
(6.3) 

Theorem 7. To each simple roo ty  ° -- y* of amplitude equation (6.3) there corresponds a unique 2nk- 
periodic rotational motion 

y i'" 
I I" l 

I 
I I 

I Id I , ! 

Fig. 3. 



184 V.N. Tkhai 

z = W(x , y ,t) + O(~t) 

T(x*) = r~k I I m I, W(x*, y*, t + 2~k) = ~l/(x*, y*, t) + 2/tin; m fi 7/, m ~ 0 

Note. In the conditions of Theorem 7 the variable x in (6.2) is defined by the expression 

• ¥ ( x  ,y ,t) • 

x = x +211 f F(O,y,g(x ,y))dy+o(11) 
o 

In autonomous equation (6.1) the integral I(y °) -- 0 and Theorem 7 is inapplicable. We will write 
Eq. (6.1) in the form 

dx I dy = 2IxF(I.t, y, g(x, y)) (6.4) 

Then, to each simple root x = x* of the amplitude equation 

2x 

F(O, y, g(x, y))dy = 0 
0 

there corresponds [7] a unique solution of Eq. (6.4), 2n-periodic in y. Now, knowing from (6.4) the 
relationship x(y) for the 2n-periodic solution, we can determine the function z(t) from the second 
equation of system (6.2). As a result, the initial equation (6.1) allows of a single-parameter family of 
periodic rotational motions. 

Note that it follows from the results obtained, in particular, that steady-state solutions of the averaged 
system when investigating rotational motions using Volosov's method [15], correspond to exact periodic 
rotational motions. 

The reversible equation. We will assume that the functions f and F in (6.1) satisfy the additional 
conditions 

f ( - z )  = - f ( z ) ,  F(~t, -z, z ' , - t )  = -F(I,t, z, z', t) (6.5) 

Then Eq. (6.1), (6.5) is reversible with a fixed set M = {t, z, z" : sin t = 0, sin z = 0}. Obviously, in this 
case the generating equation is also reversible with a fixed set M* = {z, z" : sinz = 0}, and all the rota- 

0 0 tional motions, symmetrical with respect to M*, are described by odd functions t - t (t is the initial 
instant of time). The set {t, x, y : sin t = 0, sin y = 0} is a fixed set for reversible system (6.2), (6.5). 
Hence, the symmetrical, 2nk-periodic rotational motion ~(x*, ~ ,  t), ~ ~ 7 /T(x*)  = r, k l  m I (k ~ N, 
m ~ 7/) of the generating system for (6.2) is continued with respect to the parameter Ix if (Theorem 6) 

O¥(x*, rc13, n (a  + k))/Ox* ~ 0 

(ha is the initial value of t, in which case z = rc13). It was shown above that this condition is always 
satisfied. 

Theorem 8. For the reversible equation (6.1), (6.5) all 2r&-periodic rotational motions 

T(x*) = ~kllml, ~(x*, r(~, t + 2~k) = ¥(x*, ~13, t) + 21r.m; k ~ N, m, ~ ~ Z 

are continued with respect to the parameter IX. 
In the autonomous case, when conditions (6.5) are satisfied, Eq. (6.4) describes motion in an invariant 

set. Consequently [5], all the solutions of Eq. (6.1), (6.5) are 2n-periodic in z. In particular, this can be 
constant solutions. 

In view of the fact that the function V(z) is even, the zero will be the equilibrium position for the 
generati0g equation (Fig. 3). It follows from the fact that V(z) is 21r-periodic that the points z = hi3 
(13 ~ 7/),are also equilibria. We will Consider oscillatory motions of only one of these equilibria (for 
example, the point z = 0) and we will investigate the problem of the continuation of the 2r&-periodic 
oscillations with respect to the parameter Ix. Note that the oscillatory motion considered may contain 
an odd number of equilibrium positions inside it (Fig. 3). 
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Suppose Z(Zo, t) is an oscillatory solution of Eq. (6.1), (6.5) when IX = 0 with initial point z = 0, z = 
z~ when t = 0. We will calculate Oz/az'o when T = r&. When t > T/2 we have (Fig. 3) 

[. - - - - r . : -~  = T - t ,  r ( x " ) = 2 I d~ 
o g(x ,~) o g(x' ,~)  

Now, taking into account the fact that x* = z02, we have 

1 ~z .z d~ ~T(x °) 

Since we have z = 0 when t = T, we obtain 

3z I ~Zo I,-_ r = z~ ~T ( x* ) I ~Zo 

where z0 ~ 0. 

Theorem 9. The symmetrical, 2r&-periodic (k ~ N) oscillatory motion of Eq. (6.1), (6.5) is continued 
with respect to the parameter IX, if 

T(x*) = ~/Iml, m ~ Z, ~T(x*)/ax* ~ 0 

7. A S A T E L L I T E  IN THE P L A N E  OF AN E L L I P T I C  O R B I T  

The motion of a satellite in this problem is described by the equation [16] 

a " -  2esinv ( a ' + l ) +  Ixsinacosa =eF(e ,a ,a ' , v ) , g ,~ l  (7.1) 
1 + e cost) ! + e cost/ 

Here e is the eccentricity of the elliptic orbit (0 ~< e < 1), Ix is the inertial parameter (I Ix I ~< 3), a is 
the angle between the radius vector of the centre of mass and the principle central axis of inertia in the 
plane of the orbit, u is the true anomaly, chosen as the independent variable, and e is a small parameter. 

When e = 0 we have Beletskii's equation [17], which describes the motion of a satellite due solely 
to gravitational forces. The perturbations aF are due to the action of the atmosphere, light pressure, 
the magnetic field and other factors, ignored in the model. We will assume that the function F is 2rt- 
periodic in a, and u. 

Equation (7.1) has been investigated in numerous publications (see [ 16]). The most complete results 
have been obtained for e = 0. Here all possible odd oscillatory and rotational motions have been 
constructed and their stability has been investigated [2, 16]. The problem of the motion of a satellite 
acted upon by gravitational forces and the resistance of the atmosphere [16] and the problem of the 
motion under gravitational forces and light pressure [18, 19] have been considered separately. In the 
latter problem a systematic study of periodic rotational motions was begun in [19]. 

When e = 0, Eq. (7.1) is reversible with a fixed set M = {t~, a, a': sin v = 0, sin a = 0}. This immediately 
follows from the invariance of Eq. (7.1) when e = 0 with respect to the replacement (v, a,  a ' )  
(-ag, - a ,  a ' )  and the fact that it is 2rt-periodic in u and a. Moreover, when a is replaced by a + 7t/2, 
Beletskii's equation retains its form when Ix is replaced by -Ix and remains reversible. 

1. A satellite in a slightly elliptic orbit (e ~ 1). When e = 0 and e = 0 Eq. (7.1) describes the motion 
of a mathematical pendulum and has the energy integral 

a '2 + Ixsin 2 a = h(h = const) 

When ~t > 0 the zeroth equilibrium position is stable and oscillatory motion exist around it. The period 
of these oscillations is 

_•! du , ~,~2 =a,o ~ 
2T= ~](1 - u2)(1 -x2u 2) 
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(a~ is the initial velocity a = a0 = 0). Hence dT/d× ~ 0, and all the 2r&-periodic oscillations for which 
T = nk/m (k, m ~ N) are continued with respect to the parameters e and e if the perturbations belong 
to the class of reversible perturbations. 

The case p. < 0 can be reduced to the case when Ix > 0 by replacing a by a + rd2. 

Theorem 10. If Ix > 0, all 2r&-periodic oscillatory motions of the satellite are continued with respect 
to the parameters e and e, if the perturbations satisfy the condition 

F(~, ---a,5',-o) = - F(g,5,5',u) (7.2) 

When g < 0 the similar condition takes the form 

F(a, --a + n/2, 5', -u) = -F(a,a  + r,12, a',v) (7.3) 

The following assertion follows from Theorem 8. 

Theorem 11. For sufficiently small e ~ 0 in a slightly elliptical orbit (e '~ 1) there are 2r&-periodic 
(k ~ N) rotational motions of the satellite produced from the rotational motions of the satellite in a 
circular orbit with period 

2,, d~ 2 ~  
2T= J ~ . . . . . .  , m ~ Z  

o ~ h -  I.tsin" ~ Iml 

provided the perturbations satisfy condition (7.2) or (7.3). 
Rotational motions occur when Ix < 0 (g > 0), if the energy h > 0 (h > la). In these motions, the 

satellite turns in relative motion by I m I rotations per k rotations of the centre of mass in the elliptic 
orbit. When m > 0 the satellite rotates in the same direction as the centre of mass (direct rotation) 
and when m < 0 we have the opposite rotation. I fm  = -1, we have an "almost equilibrium" orientation 
of the satellite in an absolute system of coordinates. 

2. A satellite close to a dynamically symmetrical body. When p. = 0, e ---- 0 (a dynamically symmetrical 
satellite in the Beletskii problem) we have 

50 2esinu ( a ' + l )  =0  (7.4) 
1 + ecosu 

The general solution of this equation is given by the formula 

• .,~ ( l+e)2du  

(% and ct~ are the values of the angle and angular velocity at the perigee of the orbit) and represents 
uniform rotation with angular velocity a~ + 1 in an absolute system of coordinates. This solution will 
be 2nk-periodic rotation if 

5" = - l + ( m l k + l ) ( l - e ) ~ ( l + e )  - ~ ,  m ~ Z (7.5) 

These curves are shown in Fig. 4 when k = 1. 
If a0 = 0, __. n/2, __.Tt . . . . .  these solutions are symmetrical with respect to a fixed set M. Hence, a 

sufficient condition for the continuation of these rotational motions with respect to the parameters p. 
and e is the inequality (Theorem 6) 

fl- 
~a~ =~ 0 (1 +ecosv)  2 

Theorem 12. In problem (7.1) with perturbations (7.2) or (7.3) the satellite, close to dynamically 
symmetrical body, executes 2nk-periodic rotations, close to uniform rotations with angular velocity (7.5) 
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both in the forward direction (m > 0) and in the reverse direction (m < 0). Here, after k rotations of 
the centre of mass in an elliptic orbit the satellite makes I m I rotations around the centre of mass. 

Hence, it follows that the resonance rotations of the satellite in Beletskii's problem, established in 
[20] by an asymptotic method, correspond to precise periodic rotations. 

3. Beletskii 'sperturbedproblem. When e = 0 odd 2nk-oscillatory motions of the satellite have been 
constructed (see [16]) and their stability has been investigated in the linear approximation. It follows 
from these results that the limit of the region of stability forms a set of zero measure in the (ct~, e) 
plane. Hence we can conclude (Theorem 2) that almost all these oscillatory motions are continued with 
respect to the parameter e. In the class of perturbations (7.2) or (7.3), Eq. (7.1) remains reversible. 
Hence, the pure imaginary characteristic exponents for the oscillatory motions when e = 0 remain pure 
imaginary when I e I ~: 0 is sufficiently small, provided there are no second-order resonances [21]. With 
the additional condition that there are no resonances of up to the fourth order inclusive, the Lyapunov 
stability condition is specified [22] by the difference from zero of one coefficient C ( ~ ,  Ix, e) in fourth- 
order forms of the equations of perturbed motion. This coefficient depends on (ot~, Ix, e), and the 
condition C(0t~, Ix, e) distinguishes a set of zero measure in the region of stability in the first approxi- 
mation in the (ct~, e) plane. 

Note that in Beletskii's problem an investigation of the stability of oscillatory motions in a strict non- 
linear formulation based on the Arnol 'd-Moser theorem [23, 24] and the theorem on the stability of 
a periodic Hamilton system with one degree of freedom [25] was carried out in [26]. 

All the initial velocities 0tl0 for rotational 2r&-periodic motions when e = 0 can be constructed 
numerically using a method based on Theorem 5. These results were obtained previously in [2, 19]. 
The characteristic exponents are determined by constructing [27] only one partial solution of the system 
in variations. Further, from the discussion in Sections 2 and 5 and also above in this section one can 
derive the correctness of the assertions regarding the continuation of rotational motions with respect 
to the parameter e and their Lyapunov stability. 

Theorem 13. Almost all 2nk-periodic oscillatory and rotational motions in the Beletskii problem are 
continued with respect to the small parameter e. Almost all 2r&-periodic oscillatory and rotational 
motions in Beletskii's problem, that are stable in the linear approximation, are Lyapunov stable and 
almost all these motions, when e ¢ 0 in the class of reversible perturbations (7.2) or (7.3), lead to 
Lyapunov-stable oscillatory and rotational motions of period 2nk. 

This research was supported financially by the Russian Foundation for Basic Research (96-15-96051 
and 97-01-00538). 
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